The Design of a Practical Enterprise Safety Management System by Hossam A. Gabbar


9958a971eea5c52-261x361.jpeg Author Hossam A. Gabbar
Isbn 9781402029486
File size 3MB
Year 2005
Pages 231
Language English
File format PDF
Category security



 

The Design of a Practical Enterprise Safety Management System by Hossam A. Gabbar Okayama University, Okayama , Japan and Kazuhiko Suzuki Okayama University, Okayama , Japan KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 1-4020-2948-9 (HB) ISBN 1-4020-2949-7 (e-book) Published by Kluwer Academic Publishers, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. Sold and distributed in North, Central and South America by Kluwer Academic Publishers, 101 Philip Drive, Norwell, MA 02061, U.S.A. In all other countries, sold and distributed by Kluwer Academic Publishers, P.O. Box 322, 3300 AH Dordrecht, The Netherlands. Printed on acid-free paper All Rights Reserved © 2004 Kluwer Academic Publishers No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed in the Netherlands. Table of Contents 1. OVERVIEW ................................................................................... 2 1.1. ABSTRACT ................................................................................. 2 1.2. STRUCTURE OF THE BOOK ......................................................... 6 1.3. PROBLEM STATEMENT ............................................................ 10 1.4. SAFETY MANAGEMENT ........................................................... 12 1.4.1. Strategic ......................................................................... 12 1.4.2. Tactical........................................................................... 13 1.5. BENEFITS TO BUSINESS ........................................................... 14 1.6. 2. RESEARCH SIGNIFICANCE........................................................ 15 BACKGROUND........................................................................... 19 2.1. INDUSTRIAL PRACTICES .......................................................... 19 2.2. LITERATURE REVIEW .............................................................. 21 2.3. COMMERCIAL PRODUCTS FOR COMPUTER-AIDED SAFETY ENGINEERING ...................................................................................... 22 3. THEORETICAL & METHODOLOGICAL FRAMEWORK 24 3.1. RESEARCH APPROACH ............................................................ 24 3.2. OBJECT-ORIENTED MODELING FRAMEWORK .......................... 25 3.2.1. OO Model....................................................................... 26 3.2.2. Object-Oriented Modeling Using UML ......................... 26 3.3. PLANT LIFECYCLE OO MODEL REPRESENTATION .................. 27 3.3.1. Process Model Representation....................................... 28 3.3.2. Plant Operation Model Representation ......................... 28 3.3.3. Plant Behavior Model Representation ........................... 29 3.4. PLANT SAFETY MODEL ........................................................... 29 3.4.1. 3.4.2. Plant Safety Modeling Approach ................................... 31 Plant Safety Framework................................................. 32 v Design of Practical Enterprise Safety Management System vi 3.4.3. 3.4.4. 3.4.5. Plant Safety Model Components .................................... 35 Plant Safety Management System within PEEE............. 36 Plant Safety Procedures Component.............................. 38 3.4.6. 3.4.7. 3.4.8. Safety Specifications Component ................................... 40 Safety Historical Data Component ................................ 41 Safety Common Data...................................................... 43 3.4.9. 3.4.10. Safety Scenarios Component.......................................... 45 Safety Devices Component ............................................. 51 3.5. FAULT PROPAGATION MODELING ........................................... 54 3.5.1. Scenarios from Cause-Consequence Analysis ............... 56 Fault Propagation Layers (FPLs)...................................... 57 3.5.3. Fault Propagation Modeling.......................................... 58 3.5.2. 3.5.4. Fault Propagation Ontology .......................................... 60 3.5.5. Fault Propagation Model Representation in POOM..... 60 3.5.6. Fault Propagation Automation using Knowledge Engineering .................................................................................... 62 4. PLANT ENTERPRISE ENGINEERING ENVIRONMENT (PEEE)................................................................................................... 65 5. 4.1. PEEE FUNCTIONAL ANALYSIS................................................ 66 4.2. INFORMATION TECHNOLOGY INFRASTRUCTURE ..................... 68 4.3. PEEE SYSTEM ARCHITECTURE ............................................... 69 4.4. PEEE COMPONENTS ............................................................... 72 4.5. CAPE-PSP.............................................................................. 73 PLANT MODELING ENVIRONMENT (CAPE-MODE) ...... 75 5.1. 5.2. CAPE-MODE FUNCTIONAL ANALYSIS ................................... 79 CAPE-MODE SYSTEM ARCHITECTURE .................................. 81 5.3. CAPE-MODE DESIGN SPECIFICATIONS .................................. 83 5.3.1. 5.3.2. 5.3.3. 5.3.4. 5.3.5. Concept of Model Repository......................................... 83 Model Management System (MMS) ............................... 84 Modeling User Interface (MUI) ..................................... 84 Model Translator (MT) .................................................. 85 API Handler ................................................................... 88 Design of Practical Enterprise Safety Management System 5.4. 6. MODEL REPRESENTATION WITHIN CAPE-MODE .................... 89 5.4.1. 5.4.2. UML Formal Definition Initiatives ................................ 90 Model Manipulation Language (MML) ......................... 91 5.4.3. Model Query Language (MQL) ...................................... 92 5.5. MECHANISM ............................................................................ 93 5.6. PROTOTYPE CAPE-MODE ...................................................... 94 ANALYSIS OF CAPE-SAFE ...................................................... 97 6.1. OBJECT-ORIENTED ANALYSIS METHODOLOGY ....................... 97 6.2. 6.3. BUSINESS PROFILE “AS IS” ..................................................... 98 BUSINESS ENTERPRISE DIRECTIONS “TO BE” ........................ 100 6.4. REQUIREMENTS ANALYSIS .................................................... 103 6.5. SAFETY SOLUTION CHALLENGES .......................................... 104 PROCESS THREADS ................................................................ 107 6.6. 6.7. 6.8. 7. vii BUSINESS PROCESS CHART DIAGRAMS ................................. 110 SAFETY DESIGN .................................................................... 112 CAPE-SAFE DESIGN ............................................................... 114 7.1. CAPE-SAFE COMPONENTS .................................................. 114 7.1.1. Hazard Evaluation Manager (HEM) ........................... 115 7.1.2. Hazard Evaluation Follow-up (HEF) .......................... 115 7.1.3. Safety Data Manager (SDM )........................................ 116 7.1.4. Safety Procedures Synthesizer (SPS) ........................... 116 7.1.5. Safety Regulations Manager (SRM) ............................. 116 7.1.6. CAPE-SAFE Controller (CSC) .................................... 117 7.1.7. Safety Training Manager (STM) .................................. 117 7.1.8. Safety Data/Knowledge Groups ................................... 117 7.2. CAPE-SAFE INTEGRATION IN PEEE ................................... 118 7.2.1. Integration with Modeling Environment ...................... 118 7.2.2. Integration with Design Environment .......................... 119 7.2.3. Integration with Simulation Environment .................... 119 7.2.4. Integration with Operation Environment ..................... 119 7.2.5. Sharing Common Services with PEEE ......................... 120 7.3. CAPE-SAFE IMPLEMENTATION WITHIN PEEE .................... 120 Design of Practical Enterprise Safety Management System viii 7.3.1. 7.3.2. 8. Information System Architecture.................................. 121 Implementation............................................................. 121 7.4. CAPE-SAFE PROTOTYPE SYSTEM DEVELOPMENT .............. 124 7.5. CAPE-SAFE FUNCTION DECOMPOSITION ............................ 125 7.6. POSITIONING WITH CAPE-OPEN ......................................... 126 MECHANISM ............................................................................ 128 8.1. SAFETY DATA MANAGEMENT ............................................... 128 8.1.1. CAPE-SAFE Conceptual Data Model.......................... 129 8.1.2. Safety Historical Data Structure .................................. 130 8.2. PHYSICAL DATA MODEL SPECIFICATIONS............................. 131 8.3. Plant Static Model............................................................ 131 AUTOMATED HAZARD EVALUATION RESULTS STRUCTURING 8.4. 132 SAFETY REGULATIONS .......................................................... 133 8.5. SAFETY PROCEDURES............................................................ 134 8.6. SAFETY TRAINING ................................................................. 135 8.2.1. 9. CASE STUDIES ......................................................................... 137 9.1. EXAMPLES FROM HDS PLANT .............................................. 137 9.1.1. 9.1.2. 9.2. HDS Model Representation in UML ............................ 138 Reactor CGU Representation within UML .................. 139 CAUSE – CONSEQUENCE ANALYSIS OF REACTOR CGU USING CAPE-SAFE..................................................................................... 141 9.3. EXAMPLES FROM PVC PLANT ............................................... 142 9.3.1. 9.3.2. Model 9.3.3. Reactor State Representation ....................................... 143 Representation of Reactor Safety Restrictions in Plant 144 PVC Model Representation in UML ............................ 146 EXAMPLES FROM OIL REFINERY ........................................... 147 9.4.1. Oil Storage Process Model in UML............................. 148 9.4.2. Fractionation Process Model in UML ......................... 148 9.4.3. Fault Tree Analysis of Oil Refinery.............................. 149 9.4. Design of Practical Enterprise Safety Management System 9.5. ix CAPE-SAFE UTILIZATION WITH OPERATOR INTERFACE SYSTEM ............................................................................................. 151 9.6. CAPE-SAFE UTILIZATION WITH PLANT DESIGN MODEL..... 152 9.7. CAPE-SAFE UTILIZATION WITH FAULT DETECTION SYSTEM 153 9.8. CAPE-SAFE UTILIZATION WITH RCM-BASED CMMS ....... 154 10. DISCUSSION ............................................................................. 156 11. CONCLUSION........................................................................... 158 12. RECOMMENDATIONS AND FUTURE RESEARCH......... 160 REFERENCES ................................................................................... 162 APPENDICES .................................................................................... 169 APPENDIX (1) – HIGHLIGHTS ON UML STANDARDS FROM OMG.................................................................................................... 170 APPENDIX (2) – STUDY ON MIDDLEWARE TECHNOLOGY 171 DEFINITION ....................................................................................... 171 MIDDLEWARE SOFTWARE TYPES ...................................................... 171 TRANSACTION PROCESSING MIDDLEWARE (THE PESSIMIST) ............ 172 MESSAGE-ORIENTED MIDDLEWARE (THE GOSSIPS) ......................... 173 OBJECT REQUEST BROKERS (OPTIMIST) ........................................... 175 MIDDLEWARE STANDARDS ............................................................... 176 HIGH LEVEL OBJECT MODEL ............................................................ 176 HOW OBJECTS COMMUNICATE?........................................................ 177 APPENDIX (3) – PHYSICAL DATA MODEL OF CAPE-SAFE 179 APPENDIX (4) – JAVA SOURCE CODE OF PEEE..................... 183 APPENDIX (5) – CAUSE/CONSEQUENCE SCENARIOS OF REACTOR UNIT IN HDS PLANT.................................................. 212 APPENDIX (6) – USEFUL WEB LINKS ........................................ 215 APPENDIX (7) – MOLECULAR MODELING IMPACT ON CAPE-SAFE ....................................................................................... 217 x Design of Practical Enterprise Safety Management System INTRODUCTION ABOUT MOLECULAR MODELING .............................. 217 MOLECULAR MODELING APPLICATION IN CHEMICAL PROCESS SAFETY .......................................................................................................... 219 APPENDIX (8) – MANUFACTURING PROCESS MODELING 220 Table of Figures Figure 1-1: Research Paths .............................................................................................. 8 Figure 1-2: Research Objective ..................................................................................... 10 Figure 3-1: Research Approach ..................................................................................... 24 Figure 3-2: Plant Object-Oriented Modeling Framework Using UML ......................... 27 Figure 3-3: Plant Safety Model within Plant Lifecycle ................................................. 32 Figure 3-4: Cause-Consequence Relationship ............................................................... 34 Figure 3-5: Process Safety Failure Hierarchical Reasoning........................................... 34 Figure 3-6: Plant Safety Building Blocks ...................................................................... 35 Figure 3-7: Plant Safety System Structure..................................................................... 37 Figure 3-8: Plant Safety System Architecture................................................................ 38 Figure 3-9: Use Case Diagram Representing Hazard Analysis Safety Procedure ......... 40 Figure 3-10: Process Equipment Recursive Metamodeling........................................... 41 Figure 3-11: Safety Historical Data Modeling............................................................... 43 Figure 3-12: Scenario Component Utilization ............................................................... 45 Figure 3-13: Scenario Component Ontology Model...................................................... 46 Figure 3-14: Failure Inheritance in Plant Physical Model ............................................. 47 Figure 3-15: Plant Structure Abstraction ....................................................................... 47 Figure 3-16: Hazardous Materials Associated with Plant Equipment ........................... 48 Figure 3-17: Upstream end Process of Oil Refinery Plant............................................. 50 Figure 3-18: Fault Tree Analysis for Oil Refinery Using CARA .................................. 51 Figure 3-19: Safety Devices Component – Safety Control Systems Architecture......... 53 Figure 3-20: Typical Protection Layers (IPL) in Modern Chemical Plants ................... 53 Figure 3-21: Simplified P&ID of Reactor Process of HDS Plant .................................. 54 Figure 3-22: Reactor CGU Model Representation in UML........................................... 55 Figure 3-23: Fault Propagation Layers State Transition Diagram ................................. 57 Figure 3-24: Fault Propagation Schemes ....................................................................... 59 Figure 3-25: Fault Propagation Ontology Model........................................................... 60 Figure 3-26: Fault Propagation Model for Control Valve Represented as SDG............ 62 Figure 4-1: PEEE Use Case Modeling........................................................................... 66 xi xii Design of Practical Enterprise Safety Management System Figure 4-2: Example of Information Technology Infrastructure of PEEE .................... 68 Figure 4-3: Proposed PEEE Information Technology Infrastructure............................. 69 Figure 4-4: Plant Enterprise Engineering Environment System Architecture ............... 70 Figure 4-5: Plant Enterprise Engineering Environment Flow Chart ............................. 71 Figure 4-6: Plant Service Provider Design Architecture................................................ 73 Figure 5-1: Plant Modeler System Architecture ............................................................ 78 Figure 5-2: CAPE-ModE Functional Analysis using Use Case Modeling .................... 79 Figure 5-3: CAPE-ModE System Architecture.............................................................. 82 Figure 5-4: Model Representation in HTML Format .................................................... 88 Figure 5-5: CAPE-ModE Mechanism within PEEE...................................................... 93 Figure 5-6: Layout of CAPE-ModE Prototype System ................................................. 95 Figure 6-1: Object-Oriented Analysis Methodology ..................................................... 97 Figure 6-2: Hazard Evaluation Process Chart.............................................................. 111 Figure 6-3: Design Completion Process Chart............................................................. 111 Figure 6-4: Example of Design Activity Model .......................................................... 112 Figure 7-1: CAPE-SAFE System Architecture............................................................ 114 Figure 7-2: CAPE-SAFE Implementation within PEEE.............................................. 121 Figure 7-3: CAPE-SAFE Implementation ................................................................... 123 Figure 7-4: Prototype CAPE-SAFE System ................................................................ 124 Figure 7-5: CAPE-SAFE Function Decomposition..................................................... 125 Figure 8-1: CAPE-SAFE Data Model ......................................................................... 130 Figure 8-2: Schema Diagram of Plant Static Model .................................................... 131 Figure 8-3: Hazard Evaluation Results Automatic Structuring ................................... 133 Figure 9-1: HDS Block Diagram ................................................................................. 137 Figure 9-2: HDS Plant CGU-Level Model Representation within UML .................... 138 Figure 9-3: Reactor CGU Model Representation in UML........................................... 140 Figure 9-4: HDS Plant Representation in HTML ........................................................ 141 Figure 9-5: Simplified PVC P&ID .............................................................................. 142 Figure 9-6: Reactor State Diagram Represented in POOM ......................................... 144 Figure 9-7: PVC Model Representation in UML......................................................... 146 Figure 9-8: Simplified P&ID of Upstream-End of Oil Refinery ................................. 147 Figure 9-9: Oil Storage Model Representation in UML Format.................................. 147 Figure 9-10: Oil Storage CGU Model Representation in UML................................... 148 Design of Practical Enterprise Safety Management System xiii Figure 9-11: Fractionation Process Model Representation in UML Format................ 149 Figure 9-12: Fault Tree Analysis of Oil Refiner Process............................................. 150 Figure 9-13: Operator Interface System....................................................................... 151 Figure 9-14: Utilization of HEM with Design Environment ....................................... 152 Figure 9-15: CAPE-SAFE Utilization with Fault Detection System ........................... 153 Figure 9-16: RCM-Based CMMS System Architecture .............................................. 154 Figure A2-0-1: Transaction Processing Monitor (TPM).............................................. 173 Figure A2-0-2: Base Message-Oriented Middleware Function ................................... 174 Figure A2-0-3: Object Request Broker........................................................................ 175 Figure A2-0-4: CORBA communication Model.......................................................... 177 Figure A2-0-5: DCOM communication model............................................................ 178 Figure A7-0-1: Molecular Model................................................................................. 217 Figure A7-0-2: Energy Due to Bond Stretching .......................................................... 218 Figure A7-0-3: 3D Examples of Molecular Models .................................................... 219 Figure A8-0-1: Manufacturing Modeling System Architecture................................... 220 Figure A8-0-2: Control Valve Final Product: (a) Gate Valve. (b) Globe Valve.......... 221 Figure A8-0-3: Manufacturing Process Model in POOM............................................ 222 Figure A8-0-4: Object-Oriented Model Representation of Control Valve .................. 223 Figure A8-0-5: Simplified Process Diagram for the Manufacturing Process .............. 224 Figure A8-0-6: Manufacturing Process State Diagram................................................ 224 List of Tables Table 3-1: Object-Oriented Model Views ..................................................................... 26 Table 3-2: Possible source of Data Errors ..................................................................... 44 Table 3-3: Scenario (S1) – Cause/Consequence Analysis for Reactor Unit of HDS Plant 56 Table 3-4: Process Failure Abstraction.......................................................................... 58 Table 3-5: Fault Propagation Result Analysis ............................................................... 59 Table 3-6: Fault Propagation Model Mapping to POOM .............................................. 61 Table 4-1: PEEE Components Description.................................................................... 72 Table 5-1: Broad Line Recommendations to Design CAPE-ModE............................... 81 Table 5-2: Functions Offered by MUI ........................................................................... 85 Table 5-3: XMI Standard Code Structure ...................................................................... 86 Table 5-4: Sample XMI code for Reactor Class within HDS Plant............................... 86 Table 5-5: Examples of APIs to Manipulate the Model within CAPE-ModE ............... 89 Table 5-6: OMG Metadata Architecture........................................................................ 90 Table 5-7: Examples from UML Formal Definition...................................................... 91 Table 5-8: Example MML Commands .......................................................................... 92 Table 5-9: Example MQL Commands........................................................................... 92 Table 6-1: CAPE-SAFE Business Segments ................................................................. 99 Table 6-2: Integrated Safety Solution Challenges ....................................................... 104 Table 6-3: Process Threads.......................................................................................... 107 Table 7-1: Examples from the CAPE-SAFE Integration with Plant Modeling ........... 118 Table 8-1: Safety Data Groups Management Mechanism ........................................... 128 Table 9-1: Reactor Operation Steps ............................................................................. 142 Table 9-2: Example of Safety Restrictions Representation Within The Plant Model.. 145 Table 9-3: CAPE-SAFE interaction with OIS ............................................................. 151 Table A5-1: Scenario S1 – Cause / Consequence Analysis of Reactor Unit ............... 212 Table A5-2: Scenario S2 – Cause / Consequence Analysis of Reactor Unit ............... 213 Table A5-3: Scenario S3 – Cause / Consequence Analysis of Reactor Unit ............... 214 Table A8-1: Simplified Table Describing the Statechart of Product Object................ 223 xiv Design of Practical Enterprise Safety Management System xv Table A8-2: Object Types vs. Action rule sets of the Manufacturing Process of Control Valve .................................................................................................................. 223 Table A8-3: Action Rule Example for Operation within MPU1 ................................. 224 Abbreviations BPCS CAPE CGU CSC CWM ETA FDS FLD FMEA FMECA FPL FPM FPME FTA HDE HEF HEM IPL MML MMS MQL MUI NAS OCL OIS OMG OPR OSHA P&ID PEC Basic Process Control System Computer-aided process engineering Control Group Unit CAPE-SAFE Controller Common Warehouse Metamodel Common Warehouse Metamodel Event Tree Analysis Fault Detection System Fluid Failure Mode and Effect Analysis Failure Mode and Effect Criticality Analysis Fault Propagation Layers Fault propagation model Fault propagation model element Fault Tree Analysis Hazard Decision Engine Hazard Evaluation Follow-up Hazard evaluation manager Independent Protection Layers Model Manipulation Language Model Management System Model Query Language Model User Interface Normal/Abnormal Situation Object Constraint Language Operator Interface System Object Management Group Operation Occupational Safety & Health Piping & Instrumentation Diagram Physical Equipment Class xvi Design of Practical Enterprise Safety Management System PEEE PHA POOM POS PV S/D S/U SDF SDM SPS SRM SS STEP UML XML xvii Plant Enterprise Engineering Environment Preliminary Hazard Analysis Plant Object Oriented Model Position within the process Process Variable Shutdown Start-up Standard Data Format Safety Data Manager Safety Procedures Synthesizer Safety Regulations Manager Steady State Standard for the Exchange of Product Model Data Unified Modeling Language Extensible Markup Language Glossary Accident, accident scenario, or accident sequence: An unplanned event or sequence of events that results in undesirable consequences. An incident with specific safety consequences or impacts. Consequence: The direct, undesirable result of an accident sequence usually involving a fire, explosion, or release of toxic materials. Consequence descriptions may be qualitative or quantitative estimates of the effects of an accident in terms of factors such as health impacts, economic loss, and environment damage. Event: An occurrence related to equipment performance or human action, or an occurrence external to the system that causes system upset. Hazard: An inherent physical or chemical characteristic that has the potential for causing harm to people, property, or the environment. Hazard Evaluation (HE): The analysis of the significance of hazardous situations associated with a process or activity. Uses qualitative techniques to pinpoint weaknesses in he design and operation of facilities that could lead to accidents. Risk: The combination of the expected frequency (event/year) and consequence (effects/event) of a single accident or a group of accidents. Risk Assessment: The process by which the results of a risk analysis (i.e. risk estimates) are used to make decisions, either through relative ranking of risk reduction strategies or through comparison with risk targets. Risk Management: The systematic application of management policies, procedures, and practices to tasks of analyzing, assessing, and controlling risk in order to protect employee, the general public, the environment, and company assets. Process Operator: A person responsible for monitoring controlling and performing tasks as necessary to accomplish the productive activities of the plant. xix xx Design of Practical Enterprise Safety Management System Safety System: Equipment and/or procedures designed to limit or terminate an accident sequence, thus mitigating the accident and its consequences. Simulation: Attempting to predict aspects of the behavior of some system by creating an approximate (mathematical) identifiable model of it. Models might be quantitative, qualitative, or mix. Preface This book is a result of research work that has been carried out at the System Analysis Laboratory within the Department of Systems Engineering at Okayama University, Japan. It includes authors’ experience in safety management and assessment practices for chemical and production industrial plants. It also includes knowledge and skills gained from collaboration research projects with Loughborough University-UK and VTT-Finland to investigate and design practical enterprise safety management systems as part of computer-aided engineering systems and tools. Safety assessment has been addressed from the process systems engineering viewpoint focusing on health, safety, and environment practices. Recently, more attention has been made towards health, safety, and environment (HSE) regulations and legislations where the compliance with the national and international safety regulations becomes an essential and deciding factor in the current market competition. Chemical/petrochemical plants are required to apply, comply with, and manage such regulations to keep its leading position in the challenging market. Currently, there is no complete HSE management system that can reliably manage all safety aspects within the enterprise throughout its lifecycle. Such automated system is highly needed to ensure safety regulations and to evaluate the risk associated with the design and operation of any part of the plant process. This comes within the attempts to approach the ideal manufacturing or production plants, and to automate plant enterprise activities while enabling the latest technologies. This book provides useful materials to enable individual enterprises to develop and implement a complete plant enterprise safety management system, as a part of the HSE management and as integrated with other enterprise management modules in all levels i.e. nano-microxxi xxii Design of Practical Enterprise Safety Management System maco. It is not meant to study how to develop information management system, but how to design and implement practical enterprise safety management system as part of the enterprise integrated systems. The authors will show practical steps to automate and manage all safety aspects within the plant enterprise. The approach used in this study comes in two folds: (1) to develop plant safety model that covers all safety aspects and research the concept of realizing each element; (2) to follow the software engineering lifecycle and to conduct the analysis and user requirements that formulate the contextual and conceptual models to build such integrated safety management system. Drawing the complete picture of the plant enterprise engineering environment helped in understanding the role and links of the proposed solution among other components to automat the different functions within the plant enterprise environment throughout its lifecycle. Object technology is utilized to model and analyze the target system where it is proven to be the most efficient approach to realize robust computer-aided tools. Acknowledgement I would like to thank Professor Suzuki for his support and guidance throughout the research progress and development of this book. And I would like to thank Dr. Yukiyasu Shimada for his assistance, and all members of the system analysis laboratory for the interactive discussions. Also, I would like to thank Professor Paul Chung from Loughborough University in UK on his advice and valuable suggestions. And many thanks for participated members from VTT for their valuable comments. Okayama, Japan. Hossam A.Gabbar

Author Hossam A. Gabbar Isbn 9781402029486 File size 3MB Year 2005 Pages 231 Language English File format PDF Category Security Book Description: FacebookTwitterGoogle+TumblrDiggMySpaceShare This book presents design guidelines and implementation approaches for enterprise safety management system as integrated within enterprise integrated systems. It shows new model-based safety management where process design automation is integrated with enterprise business functions and components. It proposes new system engineering approach addressed to new generation chemical industry. It will help both the undergraduate and professional readers to build basic knowledge about issues and problems of designing practical enterprise safety management system, while presenting in clear way, the system and information engineering practices to design enterprise integrated solution.     Download (3MB) Engineering Safe and Secure Software Systems Quality-I Is Safety-ll: The Integration of Two Management Systems Official (ISC)2® Guide to the ISSMP® CBK® Role Engineering for Enterprise Security Management Understanding Windows CardSpace Load more posts

Leave a Reply

Your email address will not be published. Required fields are marked *